Problem 11 (8 points)

The LRC circuit as shown is driven by a power supply whose EMF = $V_o\cos(\omega t)$. In steady state, the current through the ideal self-inductor is I_L , the current through the ideal capacitor is I_C , and the current through the resistor is I_R . Steady state means that you wait a long time so that all transient phenomena have died out. Don't even THINK of writing down a differential equation. This problem is designed to see whether you have an appreciation for how a capacitor and a self inductor behave in extreme situations. No fancy math is needed. Express all your answers in terms of L, R, C and V_o .

- a. (2) What are the maximum values of I_L , I_C , and I_R in case $\omega = 0$ (zero frequency means that the power supply is now a simple battery with zero internal resistance). We are asking you for steady state solutions, NOT transient solutions.
- b. (3) Answer the same question as under "a", for the other extreme when ω approaches a value which is infinitely high.
- c. (2) Do you expect the maximum value of the current I_R to be higher or lower than the value you found under "a" in the case that the frequency is somewhere in between the above two extremes. Give your reasons.
- d. (1) There is one frequency (in steady state) for which I_R is zero. This is not so intuitive, but given the fact that this is so, what do you think that frequency is? Please, do not try to calculate this frequency.

(c) 100% Reflection \Longrightarrow no energy is absorbed.

Problem 11

- (a) In the $\omega = 0$ steady state, all currents are constant in time. The self-inductor acts as a wire with zero resistance, shorting out the capacitor and ensuring $I_C = 0$ (there would be no current in this branch even if we replaced the capacitor with a resistor). Thus we effectively have a resistor R in series with a zero-resistance wire, and $I_L = I_R = V_0/R$. (Notice, even though it is irrelevant here, that the reactance of the capacitor $(1/\omega C)$ is infinitely high.)
- (b) With ω infinitely high, the reactance of the self-inductor (ωL) becomes infinitely large and thus $I_L = 0$. The reactance of the capacitor $(1/\omega C)$ goes to zero. We effectively have a resistor R in series with a zero-reactance capacitor, and our peak current values are simply $I_C = I_R = V_0/R$.
- (c) We would expect the peak value of I_R to **decrease** from the value V_0/R found in part (a) as we increase ω to non-zero values. The effective impedance of the parallel combination of the capacitor and the self-inductor was zero with $\omega = 0$. For $\omega \neq 0$ it can only increase, as the self-inductor will no longer act as zero-Ohm wire and the reactance of the capacitor $(1/\omega C)$ will also be non-zero. (This expectation can be confirmed by an exact calculation, if you are feeling ambitious.)
- (d) The frequency is $\omega = 1/\sqrt{LC}$. (What else could it be?) This is the natural oscillation frequency of the LC sub-circuit alone. We will have an oscillating current in the LC sub-circuit that dissipates no energy. The voltage across the capacitor will be exactly offset by the power-supply voltage at all times, so that there will never be any voltage across the resistor. Hence, $I_R = 0$. (None of this is very intuitive.)

Problem 12 (See homework problem 5.7 and Exam 2, problem 4) Assuming an abrupt drop to zero, integrating around the dashed path shown gives $\oint \mathbf{E} \cdot d\mathbf{l} \neq 0$, for there is an E-field between the plates. Since this is a static situation, we have $d\Phi_B/dt = 0$ for the rate of change of magnetic flux through the open surface bounded by our loop, and thus Faraday's law asserts $\oint \mathbf{E} \cdot d\mathbf{l} = 0$. Therefore the E-field cannot drop abruptly to zero outside the capacitor.

Problem 13

- (a) V_{right} will read -0.1 Volt, since it has the same internal resistance as V_{left} but has its terminals oppositely oriented with respect to the current in the circuit.
- (b) If V_{left} reads +0.1 Volt, then the current must enter through the positive terminal. Thus the current flows counterclockwise. From Ohm's law,

$$I = V_{\text{left}}/R_{\text{left}} = (0.1)/(10^4) = 10^{-5} \text{ Amperes.}$$

The induced EMF is counterclockwise as well, and is given by

$$\mathcal{E} = I(R + R_{\text{left}} + R_{\text{right}}) = (10^{-5})(2.5 \times 10^4) = 0.25 \text{ Volts}.$$