# 8.02x Electricity and Magnetism

#### Problem Set 10

Issued: Sun, April 17

Due: Fri, April 22, 4PM < note Date & Time!

### Reading suggestions from Young & Freedman

Mon, 4/18 Patriots day vacation

Wed, 4/20: AC Circuits, Inductors, RL Circuits 31.2, 30.2,30.4

Fri, 4/22: RLC circuits, Oscillations: 30.5, 30.6

#### **Problem 1 (6 points):**

Compare the oscillations of an LRC circuit to the vibration of a mass m on a spring. What do L and C correspond to in the mechanical system? What is the mechanical analog to R?

#### Problem 2(6 points)

You have probably noticed that when a circuit carrying a large current is interrupted, a spark occurs between the poles of the switch (or the poles of a plug that is pulled).

- (a) Explain this phenomenon. Where does the energy for the spark come from?
- (b) Assume an inductor L=1mH and a resistor R=10 $\Omega$  are connected in series to a battery providing V=100V. How much energy is stored in the inductor a long time after the circuit is closed?

Problem 3 (6 points) Young&Freedman, Problem 30.10

Problem 4 (6 points) Young&Freedman, Problem 30.14

Problem 5 (6 points) Young&Freedman, Problem 30.26

## PROBLEM SET 10; 802x; SPRING 2005

1) The differential equation governing an RLC circuit is:

-Ldi/dt - Ri + q/C = 0. Using i= - dq/dt, we have,  $Ld^2q/dt^2 + Rdq/dt + q/C = 0$ .

The differential equation governing a mass on a spring is (with velocity proportional viscous damping):  $md^2x/dt^2 + bdx/dt + Kx = 0$ . Here the mass is m, K is the spring constant and b is the coefficient of proportionality between velocity and the viscous retarding force.

Thus: M and L play the same roles; b and R play the same roles; and, K plays the same role as 1/C.

Mv is the momentum that will persist unless changed by a force, and Li is the flux in an inductor that will persist unless changed by an external agent. The kinetic energy stored in motion is (1/2)  $mv^2$ , while energy is stored in the inductor as  $(1/2)Li^2$ . The resistor is an agent for energy loss at the rate  $i^2R$ . Energy is lost to viscocity at the rate  $bv^2$ . Energy is stored in a capacitor as  $(1/2)q^2/C$  and energy is stored in the spring as  $(1/2)Kx^2$ .

2) The self-inductance of the circuit causes the current to persist until the voltage developed across the gap acting as a capacitor causes it to stop. Now this gap usually has a very small capacitance and the current, which we have assumed to be large, can charge the gap to a very large voltage. Thus the spark develops when the air brakes down. The energy for the spark comes from the energy stored in the self-inductance of the circuit,  $(1/2)Li^2$ .

The equilibrium current is i = V/R = 100/10 = 10 amps. The energy stored in the inductor is  $(1/2Li^2 = (1/2)(1/1000)(100) = 1/20$  joule.

3) a. Compare figure 30.18 and fig 30.6b. Note that points a and b are reversed. Thus, according to equation 30.8, dI/dt = (Vb - Va)/L = -1.04V/0.260H = -4 A/s. Thus, the current is decreasing. b. From a. we know that di = (4A/s) dt. After integrating both sides of the expression with respect to t, we obtain  $\Delta I = (-4A/s)\Delta t$  and so  $I = (12.0\Delta) - 4A/s * 2s = 4\Delta$ .

```
4) a. U = P * t = (200W)(24h/dayx3600s/h) = 1.73x10^7 J.
b. U = \frac{1}{2} L L^2 and therefore L = \frac{2U}{L^2} = \frac{2(1.73x10^7 J)}{(80A^2)} = 5406H.
```

5) When switch 1 is closed and switch 2 is open, the loop rule gives L dI/dt + IR = 0 and therefore dI/dt = -I R/L. Integrating from  $I_0$  to I on the LHS and 0 to t on the RHS gives  $ln(I/I_0) = -R/L$  t and therefore  $I(t) = I_0 \exp(-t/(L/R))$