
(ii) For the semi-circular arc of radius r, we make use of the Biot-Savart law: 
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and obtain 
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The direction of  is out of page, or2B

G ˆ+k . 
 
(iii) The third segment of the wire runs from ( , ) (0, )x y r= + to ( , r)−∞ + . One may readily 
show that it gives the same contribution as the first one: 
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The direction of  is again out of page, or 3B

G ˆ+k . 
 
The total magnitude of the magnetic field is 
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Notice that the contribution from the two semi-infinite wires is equal to that due to an 
infinite wire: 
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9.11.5 Two Infinitely Long Wires 
 
Consider two infinitely long wires carrying currents are in the −x-direction. 
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(a) Plot the magnetic field pattern in the yz-plane. 
 
(b) Find the distance d along the z-axis where the magnetic field is a maximum. 
 
Solutions: 
 
(a) The magnetic field lines are shown in Figure 9.11.6. Notice that the directions of both 
currents are into the page.  
 

 
 

Figure 9.11.6 Magnetic field lines of two wires carrying current in the same direction. 
 
 
(b) The magnetic field at (0, 0, z) due to wire 1 on the left is, using Ampere’s law: 
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Since the current is flowing in the –x-direction, the magnetic field points in the direction 
of the cross product  
 
  1

ˆ ˆ ˆ ˆˆˆ( ) ( ) (cos  sin  ) sin  cos  ˆθ θ θ− × = − × + = −i r i j k j kθ             (9.11.23) 
 
Thus, we have  
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For wire 2 on the right, the magnetic field strength is the same as the left one: 1 2B B= . 
However, its direction is given by  
 
 2

ˆ ˆ ˆ ˆˆˆ( ) ( ) ( cos  sin  ) sin  cos  ˆθ θ θ− × = − × − + =i r i j k j+ kθ  (9.11.25) 
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Adding up the contributions from both wires, the z-components cancel (as required by 
symmetry), and we arrive at 
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Figure 9.11.7 Superposition of magnetic fields due to two current sources 
 
To locate the maximum of B, we set /dB dz 0= and find 
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which gives 
 z a=  (9.11.28) 
 
Thus, at z=a, the magnetic field strength is a maximum, with a magnitude  
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9.11.6 Non-Uniform Current Density 
 
Consider an infinitely long, cylindrical conductor of radius R carrying a current I with a 
non-uniform current density 
 J rα=  (9.11.30) 
 
where α  is a constant. Find the magnetic field everywhere. 
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(ii) Similarly, along the x-axis, we have 2

ˆ'd dx=s iG  and 2
ˆ( ') ˆx x y= − +r i jG  which gives 

 
 2 2

ˆ'd y d× =s r kxG G  (9.11.48) 
 
Thus, we see that the magnetic field at P points in the +z-direction. Using the above 

results and 2 2
1 ( ')r x y y= + −  and ( )2 2

2r x x′= − + y , we obtain 
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The integrals can be readily evaluated using  
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The final expression for the magnetic field is given by 
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We may show that the result is consistent with Eq. (9.1.5)  
 
 
9.12 Conceptual Questions 
 
1. Compare and contrast Biot-Savart law in magnetostatics with Coulomb’s law in 
electrostatics.  
 
2. If a current is passed through a spring, does the spring stretch or compress? Explain. 
 
3. How is the path of the integration of d⋅∫ B s  chosen when applying Ampere’s law? 
  
4. Two concentric, coplanar circular loops of different diameters carry steady currents in 
the same direction. Do the loops attract or repel each other? Explain. 
 
5. Suppose three infinitely long parallel wires are arranged in such a way that when 
looking at the cross section, they are at the corners of an equilateral triangle. Can currents 
be arranged (combination of flowing in or out of the page) so that all three wires (a) 
attract, and (b) repel each other? Explain.  
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9.13 Additional Problems 
 
 
9.13.1 Application of Ampere's Law 
 
The simplest possible application of Ampere's law allows us to calculate the magnetic 
field in the vicinity of a single infinitely long wire. Adding more wires with differing 
currents will check your understanding of Ampere's law. 
 
(a) Calculate with Ampere's law the magnetic field, | | ( )B r=B

G
, as a function of distance r 

from the wire, in the vicinity of an infinitely long straight wire that carries current I. 
Show with a sketch the integration path you choose and state explicitly how you use 
symmetry. What is the field at a distance of 10 mm from the wire if the current is 10 A? 

 
(b) Eight parallel wires cut the page perpendicularly at the points shown. A wire labeled 
with the integer k (k = 1, 2, ... , 8) bears the current 2k times 0I  (i.e., 02kI k I= ). For 
those with k = 1 to 4, the current flows up out of the page; for the rest, the current flows 
down into the page. Evaluate d⋅∫ B s  along the closed path (see figure) in the direction 
indicated by the arrowhead. (Watch your signs!) 
 
  

 
 

Figure 9.13.1 Amperian loop 
 

(c) Can you use a single application of Ampere's Law to find the field at a point in the 
vicinity of the 8 wires? Why? How would you proceed to find the field at an arbitrary 
point P?  
 
 
9.13.2  Magnetic Field of a Current Distribution from Ampere's Law 
 
Consider the cylindrical conductor with a hollow center and copper walls of thickness 

 as shown in Figure 9.13.2. The radii of the inner and outer walls are a and b 
respectively, and the current I is uniformly spread over the cross section of the copper. 
b a−
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9.13.4 The Magnetic Field Through a Solenoid 
 
A solenoid has 200 closely spaced turns so that, for most of its length, it may be 
considered to be an ideal solenoid. It has a length of 0.25 m, a diameter of 0.1 m, and 
carries a current of 0.30 A.  
 
(a) Sketch the solenoid, showing clearly the rotation direction of the windings, the current 
direction, and the magnetic field lines (inside and outside) with arrows to show their 
direction. What is the dominant direction of the magnetic field inside the solenoid? 
 
(b) Find the magnitude of the magnetic field inside the solenoid by constructing an 
Amperian loop and applying Ampere's law. 
  
(c) Does the magnetic field have a component in the direction of the wire in the loops 
making up the solenoid? If so, calculate its magnitude both inside and outside the 
solenoid, at radii 30 mm and 60 mm respectively, and show the directions on your sketch. 
 
 
9.13.5 Rotating Disk 
 
A circular disk of radius R with uniform charge density σ  rotates with an angular speed 
ω .  Show that the magnetic field at the center of the disk is  
 

 0
1
2

B Rµ σω=  

 
Hint: Consider a circular ring of radius r and thickness dr. Show that the current in this 
element is ( / 2 )dI dq r drω π ωσ= = . 
 
 
9.13.6 Four Long Conducting Wires 
 
Four infinitely long parallel wires carrying equal current I are arranged in such a way 
that when looking at the cross section, they are at the corners of a square, as shown in 
Figure 9.13.5. Currents in A and D point out of the page, and into the page at B and C. 
What is the magnetic field at the center of the square? 
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Figure 9.13.5 Four parallel conducting wires 
 
 
9.13.7 Magnetic Force on a Current Loop 
 
A rectangular loop of length l  and width  carries a steady current w 1I . The loop is then 
placed near an finitely long wire carrying a current 2I , as shown in Figure 9.13.6. What 
is the magnetic force experienced by the loop due to the magnetic field of the wire? 
 

 
 

Figure 9.13.6 Magnetic force on a current loop. 
 
 
9.13.8 Magnetic Moment of an Orbital Electron  
 
We want to estimate the magnetic dipole moment associated with the motion of an 
electron as it orbits a proton.  We use a “semi-classical” model to do this. Assume that 
the electron has speed v  and orbits a proton (assumed to be very massive) located at the 
origin.  The electron is moving in a right-handed sense with respect to the z-axis in a 
circle of radius r = 0.53 Å, as shown in Figure 9.13.7.  Note that 1 Å = . 1010  m−

 

                Figure 9.13.7 
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