which shows that the equivalent resistance is

$$R_{\rm eq} = \frac{5}{6}R$$

7.10 Conceptual Questions

- 1. Given three resistors of resistances R_1 , R_2 and R_3 , how should they be connected to (a) maximize (b) minimize the equivalent resistance?
- 2. Why do the headlights on the car become dim when the car is starting?
- 3. Does the resistor in an RC circuit affect the maximum amount of charge that can be stored in a capacitor? Explain.
- 4. Can one construct a circuit such that the potential difference across the terminals of the battery is zero? Explain.

7.11 Additional Problems

7.11.1 Resistive Circuits

Consider two identical batteries of emf ε and internal resistance r. They may be connected in series or in parallel and are used to establish a current in resistance R as shown in Figure 7.11.1.

Figure 7.11.1 Two batteries connected in (a) series, and (b) parallel.

- (a) Derive an expression for the current in R for the series connection shown in Figure 7.11.1(a). Be sure to indicate the current on the sketch (to establish a sign convention for the direction) and apply Kirchhoff's loop rule.
- (b) Find the current for the parallel connection shown in Figure 7.11.1(b).