

Problem 2 (25 points)

A glass plate with dielectric constant K=2 is inserted into a parallel plate capacitor with area A and distance d₀ between plates. Using a power supply, the capacitor is charged to a charge Q. The power supply is NOT disconnected.

(a) What is the energy stored in the capacitor?

(b) The separation between the plates is increased to $d=2d_0$, but the glass plate remains in the same position. What is U_{stored} now?

Praetice (a) (a)]=]=13) 1,7,7,7 P-IR 50 bulb + is brighter, bulb 3 is loss brighter. the resistance of bulb 2 is reclarated to 1/2, There . I increases, Us decreases, PIIR, PIR, So but Is brighter, bulb3 is less brighter. (α) $C = \frac{260A}{N_0}$ $E = \frac{1}{2} \frac{Q^2}{C} = \frac{de}{4EA} Q^2$ unshavepleel (b) $V = QQC = \frac{cloQ}{260A}$ After seperationing, Cglass + 2 = de + -

Ustored =
$$\frac{1}{3}CV^2$$

= $\frac{1}{3}\frac{2E_0A}{3d_0}\left(\frac{d_0Q}{3E_0A}\right)^2$
= $\frac{d_0}{12E_0A}Q^2$

△V+JcY=()c 1 VI-caller= Uc =) U= OV (1-e-crt) Q=CU=COV(1-p- (x))