Problem 4 (25 points)

Shown below is the cross-section of two large parallel plates carrying charges +Q (top) and -Q (bottom). Each plate has area A. Vertically between the plates, a small charged particle with charge q and mass m is suspended at y=d/2, i.e. the force of gravity $F_G = -m*g$ and the electrostatic force on the particle cancel.

- (a) What is the sign of the small particles charge q?
- (b) Determine q in terms of the other quantities given.

 Neglect fringe effects for the electric field created by the two plates.
- (c) Sketch the electric potential energy U_E of the charged particle as a function of y from y=0 to y=d, assuming U_E = 0 at y=0.
- (d) Sketch the total potential energy U_T of the particle as a function of y from y=0 to y=d.
- (e) Sketch the electric potential V between the plates (ignore the charge q) from y=0 to y=d.

Problem 4 (25 points)

Shown below is the cross-section of two large parallel plates carrying charges +Q (top) and -Q (bottom). Each plate has area A. Vertically between the plates, a small charged particle with charge q and mass m is suspended at y=d/2, i.e. the force of gravity $F_G = -m^*g$ and the electrostatic force on the particle cancel.

- (a) What is the sign of the small particles charge q?
- (b) Determine q in terms of the other quantities given.

 Neglect fringe effects for the electric field created by the two plates.
- (c) Sketch the electric potential energy U_E of the charged particle as a function of y from y=0 to y=d, assuming U_E = 0 at y=0.
- (d) Sketch the total potential energy U_T of the particle as a function of y from y=0 to y=d.
- (e) Sketch the electric potential V between the plates (ignore the charge q) from y=0 to y=d.

PROBLEM 4

the field is constant between the plates,

with
$$E = \frac{\sigma}{\epsilon_0} = \frac{Q}{A\epsilon_0}$$

you can get it as a superposition of tields from two infinite plates

a) the change must be attracted to the top plate, so it is negative (2 points)

b)
$$F_E = F_G \dots Eq = \frac{Q}{AE}q = -mq \dots \boxed{q = -\frac{mq}{Q}\frac{AE}{Q}}$$
 (8 prints)

$$q = -\frac{mq}{Q} \frac{A\xi}{Q}$$

c) the potential energy in a constant field is linear. $U(y)-U(0)=\int_{-Ed}^{E} e^{-t}dt=qEy$ Now q is acceptive, so not have $U(y)-U(0)=\int_{-Ed}^{E} e^{-t}dt$ (5 points)

to the potential energy is constant

1:1 one ray is constant

(5 points) d) the potential energy lue to gravity is U6 = mgy = (Eq)y ... it is exactly opposite

the total preculial energy is constant

e) the potential between two plates is VW-VIY) = [E.di = -EY ... VCY=VIO)+EY

You can get this also from V= UE (now quas negative, so V has)