PRS02

Electric field lines in the space surrounding a charge distribution show:

- 1. Directions of the forces that exist in space at all times.
- 2. Only directions in which static charges would accelerate when at points on those lines
- 3. Only directions in which moving charges would accelerate when at points on those lines.
- 4. Directions in which either static or moving charges would accelerate when passing through points on those lines.
- 5. Paths static or moving charges would take.



The force between the two charges is:

- 1) Attractive
- 2) Repulsive
- 3) Can't tell without more information

## E-Field of Two Equal Charges



Electric field at point P is:

$$1.\vec{\mathbf{E}} = \frac{2k_e q s}{\left[s^2 + \frac{d^2}{4}\right]^{3/2}} \quad \hat{\mathbf{j}} \qquad 2.\vec{\mathbf{E}} = -\frac{2k_e q d}{\left[s^2 + \frac{d^2}{4}\right]^{3/2}} \hat{\mathbf{i}}$$

$$2. \vec{\mathbf{E}} = -\frac{2\kappa_e q a}{\left[s^2 + \frac{d^2}{4}\right]^{3/2}} \hat{\mathbf{i}}$$

$$3.\vec{\mathbf{E}} = \frac{2k_e q d}{\left\lceil s^2 + \frac{d^2}{4} \right\rceil^{3/2}} \quad \hat{\mathbf{J}}$$

$$3.\vec{\mathbf{E}} = \frac{2k_e q d}{\left[s^2 + \frac{d^2}{4}\right]^{3/2}} \quad \hat{\mathbf{j}} \qquad 4.\vec{\mathbf{E}} = -\frac{2k_e q s}{\left[s^2 + \frac{d^2}{4}\right]^{3/2}} \hat{\mathbf{i}}$$

## 5. Don't Know

## E-Field of Five Equal Charges



Six equal positive charges q sit at the vertices of a regular hexagon with sides of length R. We remove the bottom charge. The electric field at the center of the hexagon (point P) is:

$$1.\vec{\mathbf{E}} = \frac{2kq}{R^2} \quad \hat{\mathbf{j}}$$

3. 
$$\vec{\mathbf{E}} = \frac{kq}{R^2}$$
  $\hat{\mathbf{j}}$ 

$$5. \quad \vec{\mathbf{E}} = \vec{0}$$

$$\mathbf{\vec{E}} = -\frac{2kq}{R^2} \quad \hat{\mathbf{j}}$$

4. 
$$\vec{\mathbf{E}} = -\frac{kq}{R^2} \hat{\mathbf{j}}$$