

Problem 1 (25 points)

Consider the configuration shown below, with a negative charge Q_0 at position x_0 =0 and another positive charge Q_1 at position x_1 along the x-axis.

- (a) At which position x_2 could another positive charge charge Q_2 be added, such that the total force on Q_0 is 0? Give two examples of x_2 and corresponding Q_2 , in terms of x_0 , x_1 , Q_0 and Q_1 (or a subset of these variables).
- (b) Suppose Q_0 is free to move along the x-direction, while Q_1 and Q_2 are fixed. For one of your examples, draw a sketch on the graph below, showing the change in electric potential energy U(x) U(0) for Q_0 as a function of position in x.
 - (Hint: Consider the potential energy due to Q₁ and Q₂ separately and remember the superposition principle)
- (c) Qualitatively, describe what would happen if Q_0 was displaced by a small distance Δx from $x_0=0$ to $x=\Delta x$ and then released (two sentences max.)?

Problem 2 (25 points)

Suppose I brought an object to class and claimed that this object carries a third type of charge (i.e. neither 'positive' nor 'negative', but a third type of electric charge). Given what you know about the attraction/repulsion between like and unlike charges and between charged and neutral objects, describe the steps you would take to verify or dispute my claim. Assume you have positively and negatively charged objects and neutral objects at hand and that you have a device to measure the force between any two objects.

Your answer should have no more than 5 or 6 sentences.

Quiz a

Poblem 1

a) Prossible positions for change 3 are on the two changes.

ZF=0

$$\frac{Q_0Q_2}{(N_0-N_0)^2} = 0$$

$$X_{\lambda} = I \frac{10^{\lambda}}{10^{\lambda}} (X_1 X_0) + X_0$$

De Xo=0

$$\Rightarrow X_{2} = \pm \frac{\sqrt{Q_{2}}}{\sqrt{Q_{1}}} \times 0.$$

Since Nox 0, No= - 101 X,

Q XJ=-X, when Q=Q, So NJ=-TDX, when Q=2Q, (b) Using the superposition principle For Q=Q1 ()(X) = - Q.Q. + Q.Q. | [X-X.] + [X.X.] - QOQI + QOQI [XITX] + XI-XI (0) = 20,00 1X1 U(N)-U(0) = Q.Q. (1/2/11/1/201) - 2Q.Q. U(D)-100) 2000

Jn this case, the total force will point to the right, so the Q. will move toward the positive x direction.

Boblem 2. If the object of closest carry a third type of charge, only possitive or negative then if I mearsure the forces between it and a positive charge, and the force between it and a negative charge, the two forces will be in the elifterent direction. Otherwise if the forces we both prepulsive or attractive, then there must be Something new out the charges