at y 1 and the negative charge at y = -1. Again, singularities at (x, y) (0 ± 1) are not shown.

1.11 Additional Problems

1.11.1 Plotting Vector Fields

Plot the following vector fields:

(a)
$$y\hat{\mathbf{i}} - x\hat{\mathbf{j}}$$
 (b) $\frac{1}{\sqrt{2}}(\hat{\mathbf{i}} - \hat{\mathbf{j}})$ (c) $\frac{x\hat{\mathbf{i}} + y\hat{\mathbf{j}}}{\sqrt{2}}$ (d) $2y\hat{\mathbf{i}}$ (e) $x^2\hat{\mathbf{i}} + y^2\hat{\mathbf{j}}$

(f)
$$\frac{y\hat{\mathbf{i}} - x\hat{\mathbf{j}}}{\sqrt{x^2 + y^2}}$$
 (g) $xy\hat{\mathbf{i}} - x\hat{\mathbf{j}}$ (h) $\cos x \hat{\mathbf{i}} + \sin y \hat{\mathbf{j}}$

1.11.2 Position Vector in Spherical Coordinates

In spherical coordinates (see Figure 1.2.3), show that the position vector can be written as

$$\vec{\mathbf{r}} = r \sin \theta \cos \phi \,\hat{\mathbf{i}} + r \sin \theta \sin \phi \,\hat{\mathbf{j}} + r \cos \theta \,\hat{\mathbf{k}}$$

1.11.3 Electric Field

A charge +1 is situated at the point (-1,0,0) and a charge -1 is situated at the point (1,0,0). Find the electric field of these two charges at an arbitrary point (0, y, 0) on the y-axis.

1.11.4 An Object Moving in a Circle

A particle moves in a circular path of radius r in the xy-plane with a constant angular speed $\omega = d\theta/dt$. At some instant t, the particle is at P, as shown in Figure 1.11.1.