MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics

Physics 8.01 TEAL

Fall Term 2004

Exam 3: Equation Summary

Momentum:

$$\vec{\mathbf{p}} = m\vec{\mathbf{v}}, \ \vec{\mathbf{F}}_{ave} \Delta t = \Delta \vec{\mathbf{p}}, \ \vec{\mathbf{F}}_{ext}^{total} = \frac{d\vec{\mathbf{p}}^{total}}{dt}$$

Impulse:
$$\vec{\mathbf{I}} = \int_{t=0}^{t=t_f} \vec{\mathbf{F}}(t) dt = \Delta \vec{\mathbf{p}}$$

Torque:
$$\vec{\tau}_S = \vec{\mathbf{r}}_{S,P} \times \vec{\mathbf{F}}_P | \vec{\tau}_S | = |\vec{\mathbf{r}}_{S,P}| | \vec{\mathbf{F}}_P | \sin \theta = r_{\perp} F = r F_{\perp}$$

Static Equilibrium:

$$\vec{\mathbf{F}}_{total} = \vec{\mathbf{F}}_1 + \vec{\mathbf{F}}_2 + \dots = \vec{\mathbf{0}} ; \quad \vec{\boldsymbol{\tau}}_S^{total} = \vec{\boldsymbol{\tau}}_{S,1} + \vec{\boldsymbol{\tau}}_{S,2} + \dots = \vec{\mathbf{0}} .$$

Rotational dynamics:
$$\vec{\tau}_S^{total} = \frac{d\vec{L}_S}{dt}$$

Angular Velocity:
$$\vec{\omega} = (d\theta/dt)\hat{\mathbf{k}}$$

Angular Acceleration:
$$\vec{\alpha} = (d^2\theta/dt^2)\hat{k}$$

Fixed Axis Rotation:
$$\vec{\tau}_S = I_S \vec{\alpha}$$

$$\tau_S^{total} = I_S \alpha = I_S \frac{d\omega}{dt}$$

Moment of Inertia:
$$I_S = \int_{body} dm (r_{\perp})^2$$

Angular Momentum:
$$\vec{\mathbf{L}}_S = \vec{\mathbf{r}}_{S,m} \times m\vec{\mathbf{v}}$$
,

$$|\vec{\mathbf{L}}_{S}| = |\vec{\mathbf{r}}_{S,m}| |m\vec{\mathbf{v}}| \sin \theta = r_{\perp} p = rp_{\perp}$$

Angular Impulse:

$$\vec{\mathbf{J}}_{S} = \int_{t_0}^{t_f} \vec{\boldsymbol{\tau}}_{S} dt = \Delta \vec{\mathbf{L}}_{S} = \vec{\mathbf{L}}_{S,f} - \vec{\mathbf{L}}_{S,0}$$

Rotation and Translation:

$$\vec{\mathbf{L}}_{S}^{total} = \vec{\mathbf{L}}_{S}^{orbital} + \vec{\mathbf{L}}_{cm}^{spin},$$
 $\vec{\mathbf{L}}_{S}^{orbital} = \vec{\mathbf{r}}_{S,cm} \times \vec{\mathbf{p}}^{total},$

$$\vec{\mathbf{L}}_{cm}^{spin} = I_{cm}\vec{\boldsymbol{\omega}}_{spin}$$

$$\vec{\tau}_{S}^{orbit} = \frac{d\vec{\mathbf{L}}_{S}^{orbit}}{dt}, \ \vec{\boldsymbol{\tau}}_{cm}^{spin} = \frac{d\vec{\mathbf{L}}_{cm}^{spin}}{dt}$$

Rotational Energy: $K_{cm} = \frac{1}{2} I_{cm} \omega_{cm}^2$

Rotational Power: $P_{rot} = \frac{dW_{rot}}{dt} = \vec{\tau}_S \cdot \vec{\omega} = \tau_S \omega = \tau_S \frac{d\theta}{dt}$

One Dimensional Kinematics: $\vec{v} = d\vec{r} / dt$, $\vec{a} = d\vec{v} / dt$

$$v_x(t) - v_{x,0} = \int_{t'=0}^{t'=t} a_x(t')dt'$$
 $x(t) - x_0 = \int_{t'=0}^{t'=t} v_x(t')dt'$

Constant Acceleration:

$$x(t) = x_0 + v_{x,0}(t - t_0) + \frac{1}{2}a_x(t - t_0)^2 \qquad v_x(t) = v_{x,0} + a_x(t - t_0)$$

$$y(t) = y_0 + v_{y,0}(t - t_0) + \frac{1}{2}a_y(t - t_0)^2 \qquad v_y(t) = v_{y,0} + a_y(t - t_0)$$

where $x_0, v_{x,0}, y_0, v_{y,0}$ are the initial position and velocities components at $t = t_0$

Newton's Second Law: Force, Mass, Acceleration

$$\vec{\mathbf{F}} \equiv m\vec{\mathbf{a}}$$
 $\vec{\mathbf{F}}^{total} = \vec{\mathbf{F}}_1 + \vec{\mathbf{F}}_2$ $F_x^{total} = ma_x$ $F_y^{total} = ma_y$ $F_z^{total} = ma_z$

Newton's Third Law: $\vec{\mathbf{F}}_{1,2} = -\vec{\mathbf{F}}_{2,1}$

Force Laws:

Universal Law of Gravity: $\vec{\mathbf{F}}_{1,2} = -G \frac{m_1 m_2}{r_{1,2}^2} \hat{\mathbf{r}}_{1,2}$, attractive

Gravity near surface of earth: $\vec{\mathbf{F}}_{grav} = m_{grav} \vec{\mathbf{g}}$, towards earth

Contact force: $\vec{\mathbf{F}}_{contact} = \vec{\mathbf{N}} + \vec{\mathbf{f}}$, depends on applied forces

Static Friction: $0 \le f_s \le f_{s,max} = \mu_s N$ direction depends on applied forces

Kinetic Friction: $f_k = \mu_k N$ opposes motion

Hooke's Law: $F = k |\Delta x|$, restoring

Kinematics Circular Motion: arc length: $s = R\theta$; angular velocity: $\omega = d\theta/dt$ tangential velocity: $v = R\omega$; angular acceleration: $\alpha = d\omega/dt = d^2\theta/dt^2$; tangential acceleration $a_\theta = R\alpha$.

Period:
$$T = \frac{2\pi R}{v} = \frac{2\pi}{\omega}$$
; frequency: $f = \frac{1}{T} = \frac{\omega}{2\pi}$,

Radial Acceleration:
$$|a_r| = R \omega^2$$
; $|a_r| = \frac{v^2}{R}$; $|a_r| = 4\pi^2 R f^2$; $|a_r| = \frac{4\pi^2 R}{T^2}$

Center of Mass:
$$\vec{\mathbf{R}}_{cm} = \sum_{i=1}^{i=N} m_i \vec{\mathbf{r}}_i / m^{total} \rightarrow \int_{body} dm \vec{\mathbf{r}} / m^{total}$$
;

Velocity of Center of Mass:
$$\vec{\mathbf{V}}_{cm} = \sum_{i=1}^{i=N} m_i \vec{\mathbf{v}}_i / m^{total} \rightarrow \int_{body} dm \vec{\mathbf{v}} / m^{total}$$

Torque:
$$\vec{\tau}_S = \vec{\mathbf{r}}_{S,P} \times \vec{\mathbf{F}}_P | \vec{\tau}_S | = |\vec{\mathbf{r}}_{S,P}| | \vec{\mathbf{F}}_P | \sin \theta = r_{\perp} F = r F_{\perp}$$

Static Equilibrium:
$$\vec{\mathbf{F}}_{total} = \vec{\mathbf{F}}_1 + \vec{\mathbf{F}}_2 + ... = \vec{\mathbf{0}}$$
; $\vec{\boldsymbol{\tau}}_S^{total} = \vec{\boldsymbol{\tau}}_{S,1} + \vec{\boldsymbol{\tau}}_{S,2} + ... = \vec{\mathbf{0}}$.

Kinetic Energy:
$$K = \frac{1}{2}mv^2$$
; $\Delta K = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2$

Work:
$$W = \int_{r_0}^{r_f} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$$
; **Work- Kinetic Energy:** $W^{total} = \Delta K$

Power: $P = \vec{\mathbf{F}} \cdot \vec{\mathbf{v}} = dK/dt$

Potential Energy:
$$\Delta U = -W_{conservative} = -\int_{A}^{B} \vec{\mathbf{F}}_{c} \cdot d\vec{\mathbf{r}}$$

Potential Energy Functions with Zero Points:

Constant Gravity: U(y) = mgy with $U(y_0 = 0) = 0$.

Inverse Square Gravity:
$$U_{gravity}(\mathbf{r}) = -\frac{Gm_1m_2}{r}$$
 with $U_{gravity}(\mathbf{r}_0 = \infty) = 0$.

Hooke's Law:
$$U_{spring}(x) = \frac{1}{2}kx^2$$
 with $U_{spring}(x=0) = 0$.

$$\textbf{Work-Mechanical Energy:} \ W_{nc} = \Delta K + \Delta U^{total} = \Delta E_{mech} = \left(K_f + U_f^{total}\right) - \left(K_0 + U_0^{total}\right)$$

Problem 5: Experiment 7: Physical Pendulum

A physical pendulum consists of a rod of mass m_1 pivoted at one end. The rod has length l_1 and moment of inertia I_1 about the pivot point. A disc of mass m_2 and radius r_2 with moment of inertia I_{cm} about it's center of mass, is rigidly attached a distance l_2 from the pivot point. The pendulum is initially displaced to an angle θ_0 and then released from rest.

- a) What is the moment of inertia of the physical pendulum about the pivot point?
- b) What is the angular acceleration of the pendulum about the pivot point?
- c) What is the angular velocity of the pendulum when the pendulum is at the bottom of it's swing?
- d) If the disc is moved further from the pivot, will the period of the pendulum increase or decrease or stay the same?

Problem 6: Experiment 11 Angular Momentum

A steel washer, is mounted on the shaft of a small motor. The moment of inertia of the motor and washer is I_{θ} . Assume that the frictional torque on the axle remains the same throughout the slowing down. The washer is set into motion. When it reaches an initial angular velocity ω_{θ} , at t=0, the power to the motor is shut off, and the washer slows down until it reaches an angular velocity of ω_{θ} at time t_{θ} . At that instant, a second steel washer with a moment of inertia I_{π} is dropped on top of the first washer. Assume that the second washer is only in contact with the first washer. The collision takes place over a time $\Delta t = t_{\theta} - t_{\theta}$. Assume the frictional torque on the axle remains the same. The two washers continue to slow down until at they stop at t_{τ} :

- a) Describe how you measured the moment of inertia in the experiment.
- b) What is the angular deceleration while the first washer and motor is slowing down?

Problem 5: Experiment 7: Physical Pendulum

A physical pendulum consists of a rod of mass m_1 pivoted at one end. The rod has length l_1 and moment of inertia I_1 about the pivot point. A disc of mass m_2 and radius r_2 with moment of inertia I_{cm} about it's center of mass, is rigidly attached a distance l_2 from the pivot point. The pendulum is initially displaced to an angle θ_0 and then released from rest.

- a) What is the moment of inertia of the physical pendulum about the pivot point?
- b) What is the angular acceleration of the pendulum about the pivot point?
- c) What is the angular velocity of the pendulum when the pendulum is at the bottom of it's swing?
- d) If the disc is moved further from the pivot, will the period of the pendulum increase or decrease or stay the same?

Solution:
$$I_p = I_p + m_2 l_2^2 + I_{cm}$$

a)

$$I_{cm} = m_1 l_1 + m_2 l_2$$

$$I_{cm} = m_1 + m_2 l_2$$

$$I_{cm} = m_1 l_2 + m_2 l_2$$

$$I_{cm} = I_p \times I_p \times$$

If the disc is shell to a new position
$$L_z'$$
 $I_p' = I_1 + I_{un} + m_z l_z'^2 = I_p + m_z (l_z' - l_z)$

so thus has changed

the center of mass has also changed

 $l_{cm'} = \frac{m_1 l_1 + m_2 l_2'}{m_1 + m_2} = \lim_{m_1 + m_2} \frac{m_2 (l_z' - l_z)}{m_1 + m_2}$

so

 $I'' = a\pi \int_{-m_1} I_{cm'} = a\pi \int_{-m_2} I_p + m_z (l_z' - l_z) \int_{-m_1 + m_2} I_{cm'} I_{cm'} = a\pi \int_{-m_2} I_{cm'} I$

$$= 2\pi \int_{P} \left(1 + \frac{m_{2}(l_{2}^{2} - l_{2}^{2})}{T_{p}}\right)$$

$$m_{7} g l_{cm} \left(1 + \frac{m_{2}(l_{2}^{2} - l_{2})}{(m_{1} + m_{2}) l_{cm}}\right)$$

$$|f| + m_{2} (l_{2}^{2} - l_{2}^{2}) > (+ m_{2} (l_{2}^{2} - l_{2})$$

$$T_{p} \qquad \qquad (m_{1} + m_{2}) l_{cm}$$

$$plriod \quad collasos,'$$