Experiment 09: Angular momentum

Goals

□ Investigate conservation of angular momentum and kinetic energy in rotational collisions.

□ Measure and calculate moments of inertia.

□ Measure and calculate non-conservative work in an inelastic collision.

Apparatus

- □ Connect output of phototransistor to channel A of 750.
- □ Connect output of tachometer generator to channel B of 750.
- □ Connect power supply.
- □ Red button is pressed: Power is applied to motor.
- □ Red button is released: Rotor coasts: Read output voltage using DataStudio.

□ Use black sticker or tape on white plastic rotor for generator calibration.

Calibrate tachometer-generator

□ Spin motor up to full speed, let it coast. Measure and plot voltages for 0.25 s period. Sample Rate: 5000 Hz, and Sensitivity: Low.

- \Box Time 10 periods to measure ω .
- □ Then calculate w for 1 V output.

□ Average the output voltage over the same 10 periods.

Measure rotor I_R

□ Start DataStudio and let the weight drop.

- □ Plot only the generator voltage for rest of experiment.
- □ Use a 55 gm weight to accelerate the rotor.
- □ Settings:
 - Sensitivity: Low
 - > Sample rate 500 Hz.
 - > Delayed start: None
 - > Auto Stop: 4 seconds

Understand graph output to

- \square Generator voltage while measuring I_R . What is happening:
 - Along line A-B?
 - 2. At point B?
 - 3. Along line B-C?
- \square How do you use this graph to find I_R ?

Measure I_R results

- $\hfill \square$ Measure and record a_{up} and $a_{down}.$
- \square For your report, calculate I_R :

$$\tau_f = I_R \alpha_{\text{down}}$$

$$I_R = \frac{mr(g - r\alpha_{\text{up}})}{\alpha_{\text{up}} - |\alpha_{\text{down}}|}$$

Fast collision

Sensitivity	Sample Rate	Delayed Start	Auto Stop
Low	200 Hz	1 sec	Falls below 0.5V

Find w_1 (before) and w_2 (after), estimate δt for collision.

Calculate
$$I_W = \frac{1}{2}m\omega(r_o^2 + r_i^2)$$

Slow collision

- \Box Find w $_1$ and w $_2$, measure δt , fit or measure to find $a_c.$
- □ Keep a copy of your results for the homework problem.