Experiment 09: Angular momentum #### Goals □ Investigate conservation of angular momentum and kinetic energy in rotational collisions. □ Measure and calculate moments of inertia. □ Measure and calculate non-conservative work in an inelastic collision. ### **Apparatus** - □ Connect output of phototransistor to channel A of 750. - □ Connect output of tachometer generator to channel B of 750. - □ Connect power supply. - □ Red button is pressed: Power is applied to motor. - □ Red button is released: Rotor coasts: Read output voltage using DataStudio. □ Use black sticker or tape on white plastic rotor for generator calibration. ## Calibrate tachometer-generator □ Spin motor up to full speed, let it coast. Measure and plot voltages for 0.25 s period. Sample Rate: 5000 Hz, and Sensitivity: Low. - \Box Time 10 periods to measure ω . - □ Then calculate w for 1 V output. □ Average the output voltage over the same 10 periods. ## Measure rotor I_R □ Start DataStudio and let the weight drop. - □ Plot only the generator voltage for rest of experiment. - □ Use a 55 gm weight to accelerate the rotor. - □ Settings: - Sensitivity: Low - > Sample rate 500 Hz. - > Delayed start: None - > Auto Stop: 4 seconds Understand graph output to - \square Generator voltage while measuring I_R . What is happening: - Along line A-B? - 2. At point B? - 3. Along line B-C? - \square How do you use this graph to find I_R ? ## Measure I_R results - $\hfill \square$ Measure and record a_{up} and $a_{down}.$ - \square For your report, calculate I_R : $$\tau_f = I_R \alpha_{\text{down}}$$ $$I_R = \frac{mr(g - r\alpha_{\text{up}})}{\alpha_{\text{up}} - |\alpha_{\text{down}}|}$$ #### Fast collision | Sensitivity | Sample Rate | Delayed
Start | Auto Stop | |-------------|-------------|------------------|------------------| | Low | 200 Hz | 1 sec | Falls below 0.5V | Find w_1 (before) and w_2 (after), estimate δt for collision. Calculate $$I_W = \frac{1}{2}m\omega(r_o^2 + r_i^2)$$ #### Slow collision - \Box Find w $_1$ and w $_2$, measure δt , fit or measure to find $a_c.$ - □ Keep a copy of your results for the homework problem.