Part Two: Earlier Material

Problem 1: (Momentum and Impulse)

A superball of $m_1 = 0.08kg$, starting at rest, is dropped from a height falls $h_0 = 3.0m$ above the ground and bounces back up to a height of $h_f = 2.0m$. The collision with the ground occurs over $\Delta t_c = 5.0ms$.

- a) What is the momentum of the ball immediately before the collision?
- b) What is the momentum of the ball immediately after the collision?
- c) What is the average force of the table on the ball?
- d) What impulse is imparted to the ball?
- e) What is the change in the kinetic energy during the collision?
- f) Assume that the rubber has a specific heat capacity of $c_r = 0.48cal \cdot g^{-1} \cdot {}^{0}C^{-1}$ and that all the lost mechanical energy goes into heating up the rubber. What is the change in temperature of the superball?

Problem 2: (Conservation of Energy and Momentum)

An object of mass $m_1 = 1.5kg$ is initially moving with a velocity v_0 . It collides completely inelastically with a block of mass $m_2 = 2.0kg$. The second block is attached to a spring with constant $k = 5.6 \times 10^3 \, N \cdot m^{-4}$. The block and spring lie on a frictionless horizontal surface. The spring compresses a distance $d = 2.0 \times 10^{-4} m$.

a) What is the velocity of the object of mass m_1 and the block immediately after the collision?

Part Two: Earlier Material

Problem 1: (Momentum and Impulse)

A superball of $m_1 = 0.08kg$, starting at rest, is dropped from a height falls $h_0 = 3.0m$ above the ground and bounces back up to a height of $h_f = 2.0m$. The collision with the ground occurs over $\Delta t_c = 5.0ms$.

- a) What is the momentum of the ball immediately before the collision?
- b) What is the momentum of the ball immediately after the collision?
- c) What is the average force of the table on the ball?
- d) What impulse is imparted to the ball?
- e) What is the change in the kinetic energy during the collision?

Assume that the rubber has a specific heat capacity of $c_r = 0.48cal \cdot g^{-1} \cdot {}^{0}C^{-1}$ and that all the lost mechanical energy goes into heating up the rubber. What is the change in

$$V_{0} = mgh_{0}, k_{0} = 0$$

$$E_{0} = mgh_{0}$$

$$V_{1} = 0, k_{1} = \frac{1}{2}mv_{1}^{2}$$

$$V_{1} = 0, k_{1} = \frac{1}{2}mv_{1}^{2}$$

$$V_{2} = 0, k_{2} = 0$$

$$V_{3} = 0, k_{3} = 0$$

$$V_{4} = 0, k_{4} = 0$$

$$V_{5} = 0, k_{5} = 0$$

$$V_{7} = 0$$