Problem 4: Spring-mass harmonic oscillator

Consider an ideal spring that has an unstretched length l_0 . Assume the spring has a constant k. Suppose the spring is attached to a mass m that lies on a horizontal frictionless surface. The spring-mass system is compressed a distance of x_0 from equilibrium and then released with an initial speed v_0 toward the equilibrium position.

- a) What is the period of oscillation for this system?
- b) How long will it take for the mass to first return to the equilibrium position?
- e) How long will it take for the mass to first become completely extended?
- d) Draw a graph of the position and velocity of the mass as a function of time. Carefully label your axes and clearly specify any special values.

Problem 5: Analysis Experiment 06 Post

a) Enter the values from your experiment into the table below.

$a_{\rm up}({\rm m/s}^2)$	$a_{\text{down}} (\text{m/s}^2)$	$U(h_1)$ (mJ)	$U(h_2)$ (mJ)

Use these numbers, along with M = 0.75 kg, to calculate the friction force on the cart. Compare it with the value you obtained from the potential energy difference between the turning points h_1 and h_2 .

- b) Explain briefly in words why it makes sense to fit the function $A \sin[2\pi(x-C)/T]$ to the force peaks when the cart bounces off the spring on the force sensor.
- c) Enter the results of your fit to the second bounce into this table:

A (N)	k (N/m)	$A^2/2k \text{ (mJ)}$

and use them to find the force constant of the spring. Compute the potential energy stored in the compressed spring, $A^2/2k$, and compare it with the average of $U(h_1)$ and $U(h_2)$ from the table above.

Problem 5: Analysis Experiment 06 Post

a) Enter the values from your experiment into the table below.

$a_{\rm up}({\rm m/s}^2)$	$a_{\text{down}} (\text{m/s}^2)$	$U(h_1)$ (mJ)	$U(h_2)$ (mJ)

Use these numbers, along with M = 0.75 kg, to calculate the friction force on the cart. Compare it with the value you obtained from the potential energy difference between the turning points h_1 and h_2 .

- b) Explain briefly in words why it makes sense to fit the function $A \sin[2\pi(x-C)/T]$ to the force peaks when the cart bounces off the spring on the force sensor.
- c) Enter the results of your fit to the second bounce into this table:

A (N)	k (N/m)	$A^2/2k \text{ (mJ)}$

and use them to find the force constant of the spring. Compute the potential energy stored in the compressed spring, $A^2/2k$, and compare it with the average of $U(h_1)$ and $U(h_2)$ from the table above.

a) Enter the values from your experiment into the table below.

Quantity:	$a_{ m up}({ m m/s^2})$	$a_{ m down}({ m m/s^2})$	$U(x_1)(\mathrm{mJ})$	$U(x_2)(\mathrm{mJ})$
My value:	$0.390 \pm 0.008 \mathrm{m/s^2}$	$0.330 \pm 0.005 \mathrm{m/s^2}$	$61.9\mathrm{mJ}$	51.8 mJ

Answer: any sensible numbers are fine.

Use these numbers, along with $M = 0.75 \,\mathrm{kg}$, to calculate the friction force on the cart. Compare it with the value you obtained from the potential energy difference between the turning points x_1 and x_2 .

Answer: from the free body diagrams, it is clear that $F_{\text{friction}} = M(a_{\text{up}} - a_{\text{down}})/2 = 22.5 \,\text{mN}$. Between x_1 and x_2 cart travelled 0.45 m, and $U(x_1) - U(x_2) = 10.1 \,\text{mJ}$. Thus $F_{\text{friction}} = 10.1/0.45 = 22.4 \,\text{mN}$.

b) Explain briefly in words why it makes sense to fit the function A sin[2π(x − C)/T] to the force peaks when the cart bounces off the spring on the force sensor.

Answer: anything that captures the idea that it is $\frac{1}{2}$ of a harmonic oscillator is OK.

c) Enter the results of your fit to the second bounce into this table

Quantity:	A (N)	T (s)	$k({ m N/m})$	$A^2/2k~(\mathrm{mJ})$
My values:	$15.3\pm0.12\mathrm{N}$	$0.130\pm0.001\mathrm{s}$		

and use them to find the force constant of the spring.

Answer: $\omega = 2\pi/T = \sqrt{k/m}$, thus $k = 4\pi^2 m/T^2 = 1750 \,\text{N}$.

Compute the potential energy stored in the compressed spring, $A^2/2k$, and compare it with the average of $U(x_1)$ and $U(x_2)$ from the table above.

Answer: $U = \frac{1}{2}kx_{\text{max}}^2 = A^2/2k = 66.8 \,\text{mJ}$, while $[U(x_1) \text{ and } U(x_2)]/2 = 59.8 \,\text{mJ}$. Should be closer, but that's what I got.