Problem 3: Balance and energy (15 pts)

A block of mass m is tied to two strings as shown in the figure below. Each string has a length L. The angle $\theta = 30^{\circ}$. ($\sin \theta = 1/2$ and $\cos \theta = \sqrt{3}/2$.) Assume the strings are massless.

- (a) Draw the free-body diagram of the block.
- (b) Find the <u>tension</u> of each string.
- (c) We cut one string and the block starts to swing down. Find the <u>speed</u> of the block when it reaches the lowest point.
- (d) Find the <u>tension</u> in the string when the block reaches the lowest point.

Solution:

(a)

(b) From the balance of the force in the vertical direction, we find

$$mq = 2T\sin\theta = T$$

Thus T = mg.

(c) The change in the potential energy is $mg(L - L\sin\theta) = mgL/2$. Thus

$$\frac{1}{2}mv^2 = \frac{mgL}{2}$$

We find

$$v=\sqrt{gL}$$

(d) The tension minus weight should provide the acceleration for the circular motion:

$$T - mg = m\frac{v^2}{L}$$

So

$$T = mq + mq = 2mq$$