MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics

Physics 8.01 TEAL

Fall Term 2004

Exam 1: Equation Summary

One Dimensional Kinematics:

$$\vec{\mathbf{v}} = d\vec{\mathbf{r}} / dt , \ \vec{\mathbf{a}} = d\vec{\mathbf{v}} / dt$$

$$v_x(t) - v_{x,0} = \int_{t'=0}^{t'=t} a_x(t') dt'$$

$$x(t) - x_0 = \int_{t'=0}^{t'=t} v_x(t') dt'$$

Constant Acceleration:

$$x(t) = x_0 + v_{x,0}(t - t_0) + \frac{1}{2}a_x(t - t_0)^2 \qquad v_x(t) = v_{x,0} + a_x(t - t_0)$$

$$y(t) = y_0 + v_{y,0}(t - t_0) + \frac{1}{2}a_y(t - t_0)^2 \qquad v_y(t) = v_{y,0} + a_y(t - t_0)$$

where $x_0, v_{x,0}, y_0, v_{y,0}$ are the initial position and velocities components at $t = t_0$

Law of Addition of Velocities:
$$\vec{\mathbf{v}}_{object, frame \, 1} = \vec{\mathbf{v}}_{object, frame \, 2} + \vec{\mathbf{V}}_{relative}$$

Newton's Second Law: Force, Mass, Acceleration

$$\vec{\mathbf{F}} \equiv m\vec{\mathbf{a}} \quad \vec{\mathbf{F}}^{total} = \vec{\mathbf{F}}_1 + \vec{\mathbf{F}}_2 \quad F_x^{total} = ma_x \quad F_y^{total} = ma_y \quad F_z^{total} = ma_z$$

Newton's Third Law:
$$\vec{\mathbf{F}}_{1,2} = -\vec{\mathbf{F}}_{2,1}$$

Force Laws:

Universal Law of Gravity:
$$\vec{\mathbf{F}}_{1,2} = -G \frac{m_1 m_2}{r_{1,2}^2} \hat{\mathbf{r}}_{1,2}$$
, attractive

Gravity near surface of earth:
$$\vec{\mathbf{F}}_{grav} = m_{grav} \vec{\mathbf{g}}$$
, towards earth

Contact force:
$$\vec{\mathbf{F}}_{contact} = \vec{\mathbf{N}} + \vec{\mathbf{f}}$$
, depends on applied forces

Static Friction:
$$0 \le f_s \le f_{s,\text{max}} = \mu_s N$$
 direction depends on applied forces

Kinetic Friction:
$$f_k = \mu_k N$$
 opposes motion

Hooke's Law:
$$F = k |\Delta x|$$
, restoring

Problem 3: (30 points) An object of given mass m starts with a given velocity v_0 and slides an unknown distance s along a floor and then off the top of a staircase. The goal of this problem is to find the distance s. The coefficient of kinetic friction between the object and the floor is given by μ_k . The object strikes at the far end of the third stair. Each stair has a given rise of h and a given run of d. You may neglect air resistance and assume the gravitational constant is given as g.

- a) Briefly describe how you intend to model the motion of the object? What are the given quantities in this problem?
- b) What is the velocity of the object just as it leaves the top of the staircase? Express your answer in terms of the given quantities only.
- c) What is the acceleration of the object while it slides on the floor? Express your answer in terms of the given quantities only.
- d) What is the unknown distance s that the object slides along the floor? Express your answer in terms of the given quantities only.

Answer:

Problem 3: (30 points) An object of given mass m starts with a given velocity v_0 and slides an unknown distance s along a floor and then off the top of a staircase. The goal of this problem is to find the distance s. The coefficient of kinetic friction between the object and the floor is given by μ_k . The object strikes at the far end of the third stair. Each stair has a given rise of h and a given run of d. You may neglect air resistance and assume the gravitational constant is given as g.

- a) Briefly describe how you intend to model the motion of the object? What are the given quantities in this problem?
- b) What is the velocity of the object just as it leaves the top of the staircase? Express your answer in terms of the given quantities only.
- c) What is the acceleration of the object while it slides on the floor? Express your answer in terms of the given quantities only.
- d) What is the unknown distance s that the object slides along the floor? Express your answer in terms of the given quantities only.

Answer:

model: two stages

stage (1): horizontal motion with deceleration

due to friction

Stage (2): projectile motion: aher=0, quer=-g

with pos. vertical direction upward

givens: m, vo, Mk, h, d, g

initial conditions: xo=0, yo=0, vy.0=0 Vx,0 unknown find conditions: Xf=3d yf=-3h equations of motion: $X_f = V_{x,0} t_f$ $Y_f = -\frac{1}{2} q t_f^2$ become (1) $3d = v_{x,o}t_f$ (2) $-3h = -\frac{1}{2}9t_f^2 \Rightarrow t_f = \sqrt{\frac{6h}{g}}$ $eg(1) \Rightarrow v_{x,0} = \frac{3d}{t_f} = \frac{3d}{\sqrt{6h/g}} = d\sqrt{\frac{3}{2}}\frac{g}{h}$ horizantal motion: f = ma $1 - f_c = ma$ $1 - f_c = ma$ $1 - f_c = ma$ fk=MkN=Mkmg => -Mkmg=ma => a = - Mkg

Initial conditions: $X_0 = 0$, $V_{X_0} = V_0$ $X_0 = V_0$

equations of motion:
$$X_f = v_{x,0}t_f + \frac{1}{2}at_f^2$$
 (3)
 $v_f = v_{x,0} + a t_f$ (4)
 $v_f = v_{x,0} + a t_f$ (1)
 $v_f = v_f + a t_f$ (1)
 $v_f = v_f + a t$