
Problem 3 (15pts) Targeting:

A bomber flies horizontally with a speed V and at a height h. Ignore the air friction and assume there is no wind. The acceleration of gravity is g. (Express your answer in terms of V, h, and g.)

- (a) How long does it take for the bomb to reach the ground?
- (b) To bomb a target, how far away from the target should the bomber release the bomb? (ie Find the distance D in the figure below.)
- (c) What is the speed of the bomb just before it hits the target?
- (d) What is the <u>location</u> of the airplane when the bomb strikes the target.

Solution:

- (a) The bomb free fell for a distance h. From $h = \frac{1}{2}gt^2$, we find that it takes $t = \sqrt{\frac{2h}{g}}$ for the bomb to reach the target.
- (b) The horizontal velocity of the bomb is always V. Thus $D=Vt=V\sqrt{\frac{2h}{g}}$.
- (c) The vertical velocity of the bomb before striking the target is $V_{vert} = tg = \sqrt{2hg}$. The speed of the bomb before striking the target is $\sqrt{V_{vert}^2 + V^2} = \sqrt{2gh + V^2}$.
- (d) Since the bomb and the airplane have the same horizontal velocity, when bomb striks target, the airplane is right above the target.