Name:	Problem 3:	/30

Problem 3(30 points) A box is made from two identical square sheets of metal with edge length E. A small square of edge length x is removed and the two flaps are folded up. Find the value of x that maximizes the volume of the box.

Solution to (f) By the product rule, the second derivative of f(x) is,

$$\frac{d}{dx}\left(\frac{x^{-3/2}}{2}(x-1)\right) = \frac{1}{2}\frac{d(x^{-3/2})}{dx}(x-1) + \frac{1}{2}x^{-3/2}\frac{d(x-1)}{dx} = \frac{-3}{4}x^{-5/2}(x-1) + \frac{1}{2}x^{-3/2}.$$

This simplifies to,

$$\frac{d^2f}{dx^2} = \frac{x^{-5/2}}{4}(-x+3).$$

This is positive for 0 < x < 3, negative for x > 3 and zero for x = 3. Notice $f(3) = \sqrt{3} + 1/\sqrt{3} = \frac{4\sqrt{3}}{3}$. Therefore,

there is a unique inflection point with coordinates $(3, \sqrt[4]{3}/3)$.

(g)(7 points) On the number line, identify where f''(x) is positive, negative or zero.

Solution to (g) By the previous part,

$$f''(x)$$
 is positive for $0 < x < 3$, negative for $x > 3$ and zero for $x = 3$.

(h)(10 points) On the grid given, sketch the graph of y = f(x).

Solution to (h) The sketch of the graph is given in Figure 1. The local minimum is the green dot, and the inflection point is the red star.

Problem 3(30 points) A box is made from two identical square sheets of metal with edge length E. A small square of edge length x is removed and the two flaps are folded up. Find the value of x that maximizes the volume of the box.

Solution to Problem 3 The length and width of the base of the box are each l = E - x and w = E - x. The height of the box is h = x. The volume of the box is,

$$V = lwh = (E - x)^2 x.$$

Therefore,

$$\frac{dV}{dx} = 2(E-x)(-1)x + (E-x)^2 = (E-x)(-2x + (E-x)) = (E-x)(E-3x).$$

The critical points are x = E/3 and x = E. The endpoints are x = 0 and x = E. Since V(0) = 0 and V(E) = 0, the maximum volume occurs when x = E/3, giving

$$V = 4E^3/27$$
 when $x = E/3$.

Problem 4(10 points) Find the quadratic approximation of $\sqrt{2-\cos(\theta)}$ for $\theta \approx 0$.