Name:	Problem 3: /25
Problem 3 (25 points) Solve the following condition.	ag separable ordinary differential equation with given initial $ \begin{cases} y'(x) = e^{x+2y}, \\ y(0) = 0. \end{cases} $

Problem 3(25 points) Solve the following separable ordinary differential equation with given initial condition.

$$\begin{cases} y'(x) = e^{x+2y}, \\ y(0) = 0. \end{cases}$$

Solution to Problem 3 Using the exponent rule,

$$e^{a+b} = e^a \cdot e^b,$$

the differential equation is equivalent to,

$$\frac{dy}{dx} = e^x \cdot e^{2y}.$$

This gives an equation of differentials,

$$e^{-2y}dy = e^x dx.$$

Antidifferentiating gives,

$$\int e^{-2y} dy = \int e^x dx,$$

which is,

$$-\frac{1}{2}e^{-2y} = e^x + C.$$

Substituting the initial condition gives the equation for C,

$$-\frac{1}{2}e^0 = e^0 + C.$$

Solving for C gives,

$$C = \frac{-3}{2}.$$

Substituting this in and simplifying gives,

$$e^{-2y} = -2e^x + 3$$

Taking logarithms and simplifying gives,

$$y = -\ln(3 - 2e^x)/2.$$

Problem 4(25 points) Compute each of the following Riemann integrals. You are not required to show every step. Please do say what method you use to compute the integral.

(a)(5 points)

$$\int_0^{\sqrt{5}} \frac{1+2x+3x^2+4x^3+5x^4dx}{1+2x+3x^2+4x^3+5x^4dx}$$