* E. 18.01 EXERCISES

2B. Curve Sketching

2B-1 Sketch the graphs of the following. Find the intervals on which it is increasing and '
decreasing and decide how many solutions there are to y = 0. (Graphs need not reflect
inflection ‘points, which are discussed in 9-2).

a)y=2-3z+1 by=zt-4z+1
0). ¥'(z) =1/(1+2%) and 4(0) =0. . dy=2*(z-1)
e)y=z/(z+4) y=vz+1/(z-3)
g) y = 3z* — 162% + 1822 + 1 h)y=e"

) 3’ = e~ and y(0) =0.
2B-2 Find the inflection points of the graphs in problem 1.
2B-3 Find the conditions on a, b and ¢ for which the cubic
y=2+az® +bz+c

has a local maximum and a local nﬁnﬁnum. Use the following two methods:

a) Find the condition under which 3’ has two distinct real roots. Which of these roots
is at the local maximum and which is at the local minimum? (Draw a picture.) .

b). Find the condition. under which ¢’ < 0 at the inflection point. Why does this
property imply that there is a local maximum and a local minimum?

2B-4 Suppose that f is a continuous function on 0 < z < 10. Sketch the graph from the
following description: f is zeroat 4,7, and 9. f'(z) >0on0<z < 5and8< z < 10
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2, APPLICATIONS OF DIFFEREN'I‘IATION

and f'(z) <0on5<z < 8. W1th the given mformatlon can you say anything for certain
about the maximum value, the minimum value of f? Can you say anything about the place
where the maximum is attained or the place where the minimum is attained?

2B-5 a) Trace a copy of the graph of the function below and draw the graph of the derivative
"directly underneath. Connect the inflection pomt to the correspondmg pomt on the graph
‘of the derivative with a vertical dotted line. - '

b) Find a rational function with a graph resembling the one below.

-7 -3

—
(V.

2B-6 a) Find a cubic polynomial w1th a local maximum at z = —1 and a local minimum
atz=1.

b) Draw the graph of the cubic on -3 <z < 3. _
c) Draw a differentiable function on -3 < z < 3 that has an absolute maximum at
= —1 and an absolute minimum at ¢ = 1. ' _
2B-7 a) Prove that if f(z) is increasing and it has a derivative at a, then f'(a) > 0. (You
may use the fact that a positive function has a limit > 0.)

b) If the conclusion of part (a) is changed to : f'(a) > 0, the statement becomes false. .
Indicate why the proof of part (a) fails to show that f'(a) > 0, and give a counterexample
to the conclusion f'(a) > 0 (i.e., an example for which it is false).

c) Prove that if f(z) has relative maximum at a and it has a derivative at a, then
f'(a) = 0. (Consider the right-and left-hand limits of Ay/Az; apply the ideas of part (a).)
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In-other words,
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2B. Curve Sketching

2B-1 a)y=23-3z+1,9y' =322 -3=3(z - 1)(z+1). y’=6 => g ==I.
Endpoint-val-ues: y— —00 a8 % — —00, and y = 00 a8 T — 00.
Critical values: y(-1) =3, y(1) = -1. : E)
Ixia'ea_sing on: ~co<r<-1,1<z<o0.
Decreasing on: ~1 <z < 1.

Graph: (—00,-00) 7 (-1,3) \ (1,~1) / (o0,00), 1a
crossing the z-axis three times.

b)y=z*—4dz+1,y =2°-4. ¢y =0 = z =413,

Increasing on: 41/3 < z < 00; decreasing on: —o0 < z < 41/3,

-1

Endpomt values: y — 00 as z — koo; critical value: y(44/ )=1.
Graph: (—00,00) \,(41//3,1) 7 (oo, 00), never crossing the z-axis. (See below)
¢) ¥'(z) = 1/(1 + z?) and y(O) = Q. By mspectlon, y’ > 0 for all 2, hence always
increasing.

Endpoint va.lues: y—>casz— oo and by,symmetry y = —cas z — —co. (But it is
not clear at this point in the course whether ¢ = oo or some finite value. It turns out (in
Lecture 26) that y -+ c¢=7/2.

Graph: (~o00,—¢) /* (00,¢), crossing the z-axis once (at z = 0). (See below.)

.................
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S. SOLUTIONS TO 18.01 EXERCISES

&y =2/(x-1), ¥ = (2a(e-1)~2?)/(z-1)? = (@ -22)/(x-1)* = (z-2Ds/(c-1)".
Endpoint values: y — oo as £ — oo and y =+ —00 as £ = —00.
* Singular values: y(1+) = +00 and y(l ) = —c0.
Critical values: »(0) = 0 and y(2) = 4.
- New feature: Pay attention to sign-changes in the denominator of y'.
Increaging on: —00 <z < 0 and 2< z < 0

. Decreasingon: 0<z<land 1<z <2

Graph: (—00,—00) 2 (0,0) \ (1,—00) 1 (1,00) \« (2,4) * (00, ), crossing the z-axis
once (at z = 0).

G’ommentary on sm_qulanmes Look out for sign changes both where y' is zero and also
where y' is undefined: y' = 0 indicates a possible sign change in the numerator and y'
undefined indicates a possible sign change in the denominator. In this case there was no
sign change in y' at = = 1, but there would have been a sign change, if there had been an
odd power of (z — 1) in the denominator.

e)y=z/(z+4),y = ((z+4) - z)/(z+4)* =4/(z + 4). No critical points.
Endpoint values: y —+ 1 as z — *o0. '
Increasing on: —4 < z < oo.
‘Decreasing on: —o00 < & < —4.
Singular values: y(—4%) = -0, y(—4~) = +o0.
‘Graph: (—o00,1) / (—4,00) | (—4,—00) 7 (00, 1), crossing the z-axis once (at z = 0).

f)y =vz+1/(z-3), ¥y = =(1/2)(z + 5)(z + 1)"*/%(z — 3)~? No critical points
because z = —35 is outside of the domain of definition, z > —1.

Endpoint values: y(—1) =0, and as z — oo,

1+1 1
R A
Singular values: y(3%) = +00, (3~ ) = —00.
Increasing on: nowhere
Decreasing on: —1 <z < 3 and 3 < z < c0.

Graph: (-1,0) \ (3, —oo) 1 (3,00) \« (00,0), crossing the z-axis once (at z = -1).
. g) y = 3z* — 162° +18z2+1 y = 12z3-48z2+36z =12z(z—1)(z — 3) y=0=
z=0,1,3.

Endpoint values: y — oo as £ — %oc0.

Critical values: y(0) = 1, y(1)-= 6, and y(3) = —188.
" Increasingon: 0 <z <land 3<z < c0.
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, .
1f l U 1g - h -
o Yoae : '
" Decreasingon: ~co<z<0and1<z<3. - =
Graph: (—o00,00) \ (0,1) /‘ (1,6) \y (3,—188) * (00, 0), crossing the z-axis once.
hy=e",y = —2ge* y—0=>w 0.

Endpoint values: y —+ 0 as z — +00.
Critical value: y(0) =1.
Increasing on: —00 < £ < 0

Decreasing on: 0 < £ < 00
Graph: (—00,0) * (0,1) \ (00,0), never crossing the z-axis. (The function is even.)

i) ¥ = e~ and y(0) = 0. Because 3/’ is even and y(0) = 0, y is odd. No critical points.

Endpoint values: y — ¢ as £ — oo and by symmetry y =+ —c as £ & —o0. It is not clear

at this point in the course whether ¢ is finite or infinite. But we will be able to show that c

is finite when we discuss improper integrals in Unit 6. (Using a trick with iterated integrals,
“a subject in 18.02, orie can show that ¢ = /7/2.)

Graph: (—00,~¢) /* (c0,c¢), crossing the z-axis once (at z =0). |

2B-2 a) One inflection point at z = 0. (3" = 6z)

b) No inflection points. y” = 3z2, so the function is convex. z = 0 is not a point of
inflection because " > 0 on both sides of z = 0.

c) Inflection point at z = 0. (" = -2z/(1+ x’)z)

d) No inflection points. Reasoning: 3" = 2/(z ~ 1)3. Thus.y” > 0 and the function
is concave up when z > 1, and ¥” < 0 and the function is concave down when z < 1. But
z =1 is not called an mﬂectlon point because the function is not continuous there. In fact,
z =1 is a singular point. .

e) No inflection points. y" = —8/(z + 1)3. As in part (d) there is a sign change in 3",
but at a singular point not an inflection point.

f) ' =-(1/2)[(z+1)(z~3) - (1/2)(z +5)(z-3) - 2(-""'*'5)(-"1‘'*'1)](5'7'l‘-1)_?'/2(-""-,3)3
= —(1/2)[~(3/2)z? — 15z — 11/2](z + 1)~3/%(z - 3)®
Therefore there are two inflection points, z = (~30+ 1/768)/6, ~ 9.6, .38.

" g) ¥" = 12(3z2 — 8z + 36). Therefore there are no inflection points. The quadratic
'equatlon has no real roots.

h) 4" = (~2+ 422)e~=". Therefore there are two inflection points at £ = £1//2.
i) One inflection point at z = 0. (y" = —2ze~*")
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S. SOLUTIONS TO 18.01 EXERCISES

éB—s a)y' =322+ 2az+ b. The roots of the quadratlc polynomial are distinct real numbers
if the discriminant is positive. (The discriminant is defined as the number under-the square
root in the quadratic formula.) Therefore there are distinct real roots if and only if

(2a)* ~4(3)b>0, or a®-3b>0.

From the picture, sincey + 0o as ™~ oo and y = —o0 as o o

T = —oo, the larger root of 3z% + 2az + b = 0 (with the Since y <<-1 when x <<-1

plus sign in the quadratic formula) must be the local min, /\/andy>> 1whenx>>1, the

and the smaller root ‘must be the local max. * local max. is to the left of the local min.
b) y"” = 6z + 2a, so the inflection point is at —a/3. Therefore the condition ¥’ < 0 at

the inflection point is

y'(—a/3) = 3(—a/3)? + 2a(—a/3) + b= —a?/3+b < 0,

which is the same as -
: a®-3b>0.

If y' < 0 at some point o, then the function ‘is decreasing at that point. But y —= 0o as
Z — 00, 80 there must be a local minimum at a point z > z,. Similarly, since y —» —o0 as
T — —00, there must be a local maximum at a point z < zo.

. Comment: We evaluate y' at the inflection poini: of y (z = —a/3) since we are ti'ying
to decide (cf. part (b)) whether 3’ is ever negative. To do this, we find the minimum of y’'
(which occurs where y" = 0).

] 4/()\ ;8 /Lo_ Maxisatx=50rx=10;
\__/4

Minisatx=0orx=38.
2B-4 :

Graph of function

)
!
w_
L
w

.

Graph of derivative; note that
local maximum point above corresponds
to zero below; -
point of inflection above corresponds to
local minimum below.
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2B-6 ) Try y' = (z+1)(z — 1) = 2% — 1. Then y = 23/3 — z + ¢. The constant ¢ won’t
matter so set ¢ = 0. It’s also more convenient to multiply by 3:

y=2°-3z

_ . . b) This is an odd function with local min and max: (1) = —2 and y(~1) = 2. The
endpoints values are y(3) = 18 and y(~3) = —18. It is very steep: 3'(3) =8 .

c)

Ay
!
2B'7 a) fla)= A -0 Az )

If y increasing then -7 > 0~ 201 g o both cases 2 > 0

| y increasing Ay<0=>Aa:<U} in casesZ;> .

Therefore, lim Ay 5o,

oAz~
Ay Az
b) Proof brea.ks down at the last step. Namely, — Az > 0 doesn’t imply hm Z; >0

- [ants don’t preserve strict inequalities, only weak ones. For example, u? > 0 for u #0,
but lmbu =020, not>0]

Counterexample: f(z) = z® is increasing for all x, but f’ 0)=
¢) Use f(a) > f(z) to show that lim Ay/Az <0and lLm Ay/Az > 0. Since
. Az—0+ Az—0-
the left and right limits are equal, the derivative must be zero.
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